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A Discrete Look at 1 + 2 + ? ? ? + n 

Loren C. Larson 

Loren Larson is Professor of Mathematics at St Oiaf Col? 
lege, where he has been a member of the faculty since 
1963. He received his Ph.D. in mathematics from the Univer? 
sity of Kansas and has done postdoctoral study at Stanford 
University and at the University of Minnesota. His profes? 
sional interests are algebra, logic, and combinatorics. An 
avid problem solver, Dr. Larson is a frequent contributor to 
problem sections in various mathematics journals. For the 
past ten years, he has prepared the Mathematical Olympiad 
and Putnam problem solutions for Mathematics Magazine, 
and currently is serving as codirector of the Putnam Mathe? 
matics Examination. He is the author of two books, Algebra 
and Trignonometry Refresher and Problem-Solving Through Prob? 
lems. Professor Larson was the director of a St. Oiaf College 
Mathematics Department project funded by the Sloan Foun? 
dation to explore ways in which methods of discrete mathe? 
matics can be introduced into the freshman and sophomore 
curriculum. 

The mathematics of computer science can be distinguished from the mathematics of 
the physical sciences. A serious study of physics and chemistry usually requires a 

background in continuous mathematics: calculus, differential equations, real and 

complex analysis. On the other hand, a study of computer science is more likely to 

require a knowledge of discrete mathematics: logic, combinatorics, graph theory, 
operations research, and applied algebra. Both continuous and discrete mathematics 

grow out of a need to solve real-world problems, and both impart ideas that are 

ultimately applicable. Both provide a context for developing general problem- 
solving skills. Ideally, students should have a background in both areas since they 
overlap and parallel each other in many ways. 

The purpose of this article is to look at some problem-solving techniques that are 

typically encountered in a first course in discrete mathematics. In order to unify this 

survey, we will show how each idea can be used to prove the well-known formula 

n(n+ 1) 
1 +2+ ...+/! = -i??L . 

Each section will conclude with exercises which the reader can use to reinforce a 

feeling for the method. 

1. Draw a Figure. A time-honored first step in understanding a problem is to 
draw and label a figure, a diagram, or a graph as, for example, in Figure 1 and 

Figure 2 (due to Ian Richards). 
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^v?v 

3 

2(1 +2+ ???+/i) = /i(/i+ 1) 

Figure 1. 

1+2+ ??? +? = (0("2) + (i)(") 

Figure 2. 

In discrete mathematics, it is also often useful to represent objects by points, and 

relationships between objects by edges adjoining corresponding points. Figure 3, for 

example, represents the flow of water from a source S, through aqueducts, to a 
terminal point T, at the rates indicated by the weights on the edges. Since the 

incoming and outgoing rates are the same at each pumping station (i.e., juncture 
point) along the way, the total output at S must equal the total input at T; that is, 

or equivalently, 

(5)(6) = 2 + 4 + 6 + 8 + 10, 

1+2+3+4+5= 
(5)(6) 

Figure 3. 

A similar figure in the general case yields the familiar formula, 

1 +2 + + n = 
n(n+ 1) 
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Exercise. Construct a network, as in the preceding example, to show that 

1 + 3 + 5 + ? ? ? + (In - 
1) = n2. 

Exercise. The diagram in Figure 4 is made up of two 1 X 1 squares, three 2x2 
squares, four 3x3 squares, five 4x4 squares, and six 5 X 5 squares. 

Figure 4. 

Show how to extend this figure to establish the general formula 

2(1+2+ 
? ? ? + n) = n(n + 1). 

Exercise. Find the sum 1 + 2 + 

(a) Pick's Theorem. 

+ n by an appropriate application of 

The area of a simple lattice polygon (a polygon with lattice 

points as vertices whose sides do not cross) is given by I + (\/2)B 
? 1, where I and B 

denote, respectively, the number of interior and boundary lattice points of the polygon. 

(b) Euler's Theorem (on connected planar graphs). V ? E + F = 2, where 
V, E, F are, respectively, the number of vertices, edges, and faces in the graph. 

2. Search for a Pattern. The process of algorithm design usually begins with a 
look at certain low-order special cases, with the hope of discovering patterns that 

might generalize to higher order, more complicated, cases. The "search for patterns" 
is a common theme in discrete mathematics. For example, a first step in discovering 
a closed-formula expression for the sum Sn of the first n positive integers is to 

compute Sn for n = 1,2,3,4,5. Thus, 

Sx = 1 =1 

52 = 1 + 2 =3 

53 =1+2 + 3 =6 

54 =1+2 + 3 + 4 =10 

55 =1+2 + 3 + 4 + 5= 15. 

From this beginning, it is not difficult to conjecture that the general formula is 

Sn = n(n + l)/2. (A proof based on this beginning is an easy application of 
mathematical induction; see Section 3.) 
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The binomial coefficients provide a rich context for mathematical discovery. One 

pattern that is relevant here is that the sum of the first k numbers in a "falling 
diagonal" in Pascal's triangle is equal to the /cth number in the next falling 
diagonal. Thus, (Figure 5) 1 + 4 + 10 + 20 + 35 = 70. 

1 7 
1 8 

Figure 5. Illustration of the "hockey stick" formula. 

In terms of binomial coefficients, Figure 5 illustrates that 

(2) ??)?($) ??)-?)? 

In general, 

(;)+(";')+("J2)+-+(":t)-("+r')- 

This is proved by repeated use of the addition formula: 

("+r')=("t')+(r-?) 

-("I'HfivHn-i')] 

= (n + k\ + (n+k- \\ +\ ( n + k - 2\ + (n + k - 2\ 
\ k ) \ k-l ) \ k-2 J I Ac ? 3 / 

(*) 

= 
(r) 

+ 
(?+v)+...+(?). 

since (?) = 0 for / < 0. 

Diagonal dx has entries 1,2,3, . . . . Therefore, taking n = 1 and letting k = n ? 1 
in (*), the discovery above shows that 

'?'????+-(JH?)+"+(.-.H:t!)-^- 
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Exercise. Let rn denote the ?th row of Pascal's triangle (note that rn has n + 1 

elements). By examining the first few cases, find formulas for 

(a) the sum of every number in rn; 
(b) the sum of every other number in rn; 
(c) the sum of every third number in rn. [Note: The answer to (c) depends upon 

the value of n (mod 6).] 

3. Mathematical Induction. Mathematical induction is the most important 
proof technique in discrete mathematics. It is the principal way of proving that a 

proposed algorithm will, in fact, always produce the desired output for an arbitrary 
input. 

A key step in formulating a proof by mathematical induction is to choose the 

proper inductive assumption. As an example, consider the following problem: 

The coefficient of x2 in the expansion of (1 + x)n+] is 1 + 2 + ??? + n. 

Suppose we let P(n) be the statement that the coefficient of x2 in (1 + x)n+x is 
1 + 2 + ? ? ? + n. The result is true when n = 1. Assume the result is true when 
n = k. Then (1 + x)k 

+ 2 = (1 + x)(\ + x)k 
+1 

and, by induction, the x2 coefficient of 

(1 + x)k+l is 1 + 2 + ? ? ? + k; that is, 

(1 + x)k 
+ 2 = (1 + x)(a0 + axx + (1 + 2 + ? ? ? + k)x2 + a3x3 + ? ? ? 

) 

for some constants a0,ax,a3, ... .It follows that the x2 coefficient of (1 + x)k 
+ 2 is 

(\ + 2 + - - - + k) + ax. Unfortunately, without knowing ax we cannot carry 
through on the inductive step. 

This is a situation that occurs quite often in inductive arguments. The initial 

propositions P(\),P(2), ... do not carry enough information to enable one to 

complete the inductive step. When this happens, it is natural to reformulate the 

propositions into a stronger, more general form, Q(\), Q(2), ... (so that Q(n) 
implies P(n) for each n), and to look once again for an inductive proof. 

So, let Q(n) denote the statement that the coefficients of x0,*1,*2 in the 

expansion of (1 + x)n 
+ l are 1, n + 1, and 1 + 2 + ? ? ? + n, respectively. Note that 

Q(n) implies P(n) for all n > 1. 
It easy to check that Q(\) is true. Assume that Q(k) is true. Then using the 

inductive assumption, 

(1 + x)/c 
+ 
2=(l + x)(l + x)k+x 

= (1 + jc)[ 1 + (k + 1)jc + (1 + 2 + ? ? ? + k)x2 + ? ? ? 
] 

= 1 + (A: + 2)x + (1 + 2 + ? ? ? + (k + l))x2 + ? ? ? . 

This last expression shows that Q(k + 1) is true; so by induction, Q(n) holds for all 
n > 1. Therefore, P(n) is true forn> 1. 

By the binomial theorem, the x2 coefficient of (1 + x)n 
+ ] is ("J1). This, together 

with the previous result, shows that for n > 1: 

1+2+ ??? +h = (n+l\ = (n + \)n 

373 

This content downloaded from 132.239.1.230 on Sat, 14 Mar 2015 16:50:07 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Exercise. Use mathematical induction to show that the coefficient of x2 in the 

expansion of (1 + x + x2 + ? ? ? + xn)n is 1 + 2 + ? ? ? + n. [Note: A counting 
argument (see Section 4) shows that the x2 coefficient is (") + (2).] 

4. Counting Arguments. The analysis of algorithms requires a background in 
the theory and practice of enumerative combinatorics (e.g., combinations and 
permutations). It is often the case that a counting problem can be done in several 
different ways, and this provides an interesting technique for proving arithmetic 
identities. 

Consider, for example, an n X n square grid of lattice points, shown in Figure 6 
for n = 6. The lattice points can be identified with ordered pairs (/,/), where / 

(1 < / < n) is the column number andy (1 < j < n) is the row number. 

12 3 4 5 6 

Figure 6. 

How many rectangles, with vertical and horizontal sides (such as A BCD), 
can be formed from these lattice points? 

One way to proceed is to fix a lattice point, say (/,/), and count the number of 

rectangles having lower-left corner at vertex (/,/). There are n ? i choices for the 
horizontal dimension and n ? j choices for the vertical dimension, and therefore 
there are (n ? i)(n ? 

j) such rectangles. It follows that the total number of 

rectangles in the n X n square grid is 

n n 

2 2 (Number of rectangles having lower-left corner at vertex (/, j)) 
i=\j=\ 

= 2 2 ("-0("-./) 

= 2(*-0 2(*-y) 
/=i j=\ 

= 
[l +2+ ? ? ? 

+(/!- I)]2. 

On the other hand, a rectangle on the n X n grid is uniquely determined by two 
rows and two columns (i.e., the sides of the rectangle). There are (2) ways to choose 
the columns and (2) ways to choose the rows, and therefore the number of 

rectangles is (2)2. 
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Equating this answer to that obtained earlier, we get 

l+2+...+(n-l)-(2)-^-!2. 

Exercise. On the n X n grid, let Sn denote the number of rectangles whose 
lower-left corner is either on the first row or the first column (or both). 

(a) Show that Sn = (n- l)3. 
(b) Show that the n X n grid has precisely Sn + Sn_x + ? ? ? + Sx rectangles. 
(c) Use these results together with the results of this section to show that 

9 tn(n+X)\2 
l3 + 23 + ? ? ? + n3 = (1 + 2 + ? ? ? + n)2= 

-1??- . 

5. One-to-One Correspondence. One of the most recent threads of research in 
combinatorics is to give "bijective" proofs of combinatorial identities. The idea is to 
set up a one-to-one correspondence (bijection) between two sets, where the sets are 

carefully chosen so that the left and right sides of the identity count the number of 
elements in the respective sets. 

In Figure 7, we see a natural correspondence between the vertices in the top n 
rows and the pairs of vertices (unordered pairs) in the (n + l)st row of the triangular 
array. Specifically, suppose v is a vertex from among the top n rows. From v we can 
reach the (n + l)st row by following a left path (take the left branch at each 

juncture) or by following a right path (take the right path at each juncture). These 
two paths terminate at two vertices vx and v2 in the (n + l)st row. Let v correspond 
to the pair {vx,v2}. 

375 

This content downloaded from 132.239.1.230 on Sat, 14 Mar 2015 16:50:07 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Conversely, if {vx,v2} is any unordered pair of vertices in the (n + l)st row, there 
is a unique vertex v among the first n rows that will correspond to the pair {vx,v2} 
in the way described in the previous paragraph. 

There are 1 + 2 + ? ? ? + n vertices in the top n rows and (n2l) pairs in the 
(n + l)st row, and therefore 

1+2+ ??? +* = 
("+M 

= (n + \)n 

Exercise, (a) Show that there is a one-to-one correspondence between the set of 
ordered pairs of integers {(a,b): 1 < a < b < n) and the set of ordered pairs of 

integers {(a,b):\ < a < b < n + 1). The latter set has (n2l) elements and the 
former set has 1 + 2 + ? ? ? + n elements. 

(b) Show that there is a one-to-one correspondence between the set of ordered 

triples of integers {(a,b,c): 1 < a < b < c < n) and the set of ordered triples of 

integers {(a,b,c)\ 1 < a < b < c < n + 2). What arithmetical identity corresponds 
to this correspondence? 

6. Recurrence Relations. Recursive algorithms, those procedures designed to 
invoke themselves, form an important class of algorithms in computer science. An 

analysis of such algorithms leads, in a natural way, to problems involving recur? 
rence relations. 

Consider the sequence of real numbers {xn : n = 1,2, . . . } defined recursively by 
the formula 

nxn = (n 
- 

2)xn_x + 1, xx = 1. 

The first few terms of the sequence are readily computed, 

1,1/2,1/2,1/2,..., 

and it is easy to show that the sequence remains constant thereafter, since xn_x 
= 1/2 implies that nxn = (n ? 2)(l/2) + 1 = n/2. 

There is another way to look at the recurrence relation. Multiply each side of the 
recurrence by n ? 1 to get 

n(n 
- 

\)xn 
= (n- \)(n 

- 
2)xn_x + (n 

- 
1), 

and now let j? = n(n ? 
\)xn. With this substitution the above equation becomes 

yn=yn-\ + ("- !)> 

or equivalently, 

yn-yn-\ = n- i- 

Since this holds for all n, it follows that 

{yn+x-yn) + {yn-yn-x)+ 
??? 

+0>2-;>1) = /i + (/i-i) + (/i-2)+ ???+!, 

or equivalently, 

1 +2+ ? ? ? +n=yn + x-yx. 

B\xtyn+X = (n + \)nxn+x (so, j, = 0) and since we know that xn = 1/2 for n > 2, it 
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follows that 

n(n + 1) 
1+2+ ??? + w = (h + \)nxn = 

???- . 

Exercise. Given the 2x2 matrix 

n 
\ n+\ 2/ 

subtract the second column from the first and take the transpose. The result is the 
matrix Mn_x. Since neither of these operations changes the value of the determi? 
nant, it must be the case that detM? = detM?_,. Use this recurrence to evaluate 
det Mn, and use this result to give another proof of the arithmetic sum formula. 

Exercise. Find a recurrence relation for the sequence {xn : n = 1,2,3, . . . } de? 
fined by xn = n(n + l)/2 (i.e., express xn in terms of xn_x). Use this recurrence to 
show that xn = 1 + 2 + ? ? ? + n. 

7. Generating Functions. The generating function for a sequence of numbers 

a0,ax ,a2,a3, .. . 

is defined to be the series 

aQ + axx + a2x2 + a3x3 + ? ? ? . 

For example, the generating function for the constant sequence 

1,1,1,1,1,. ? ? 

is the infinite geometric series 

1 + x + x2 + x3 + x4 + 

which we recognize as the power series of the function 1/(1 
? x) when \x\ < 1. 

This geometric series has a very important property as far as generating functions 
are concerned. Its product with another generating function, 

(1 + x + x2 + x3 + ? ? ? 
)(a0 + axx + a2x2 + a3x3 + ? ? ? 

) 

yields the series 

a0 + (a0 + ax)x + (a0 + ax + a2)x2 + ? ? ? + (a0 + ax + ? ? ? + an)xn + ? ? ? . 

Notice that the coefficients in the product are partial sums of the coefficients of the 

original series. Therefore, we see that 

(t^)(t^) 
= (1 + * + *2 + *3+ ???)(1 + * + *2 + *3+ ???) 

= 1 +(1 + l)x + (l + 1 + l)x2+ 
? ? ? 

= 1 + 2x + 3x2 + ? ? ? + nxn~x + ? ? ? 

and 
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( 
?L- \( 

j^? 
\ = (1 + x + x2 + x3 + ? ? ? 

)(1 + 2x + 3x2 + 4x3 + ? ? ? 
) 

= 1 + (1 + 2)x + (1 + 2 + 3);c3 + 
? ? ? 

+ (1 +2+ ? ? ? + n)xn~x + ? ? ? . (1) 

This identity shows that the coefficient of xn~x in the power series expansion of 

1/(1 
- xf is 1 +2+ ? ? ? + n. 

Another way to find the power series of 1/(1 
? x)3 is to consider |jc| < 1 and 

take two derivatives of the power series of 1/(1 
? x). Thus, starting from 

?J? = l + x + x2 + x3+ ??? + xn+l + ? ? ? , 
1 - X 

one derivative yields 

1 = 1 + 2x + 3x2 +???+(/! + \)xn + 
? ? ? , 

(1 
- 

x)2 

and a second derivative gives 

-2?- = 2 + 6x + ? ? ? +?(>!+ lYx""1 + ? ? ? . 
(I-*)3 

It follows that 

n(n+\) = 1 +3x+ ? ? ? + ?^?-x"~l+---. (2) 
(i-xy 

Since the power series representation of a function is unique, the coefficients of 
xn~x in (1) and (2) must be equal; that is, 

n(n + 1) 
1 +2+ ...+? = -??i . 

Exercise. Compute the power series of ?-, a =? 1, in two differ- 
ax2 - (a+ \)x + 1 

ent ways, and discover the formula for the sum of the finite geometric series by 
equating the coefficients of xn. One way to compute the power series is to be? 

gin by writing ?- =(- )( ?-? ); another way is to begin 
ax2-(a+\)x+\ \\-ax)\\-x) 

with the partial fraction decomposition, 

ax2-(a+\)x+\ l-? 
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8. Calculus. The preceding section shows that calculus is a useful tool in 

conjunction with discrete mathematics. For another example, consider the identity 

(1 
- 

JC)(1 + x + x2+ ? ? ? + xn) = 1 - x"+x. 

Take the derivative of each side to get 

-(1 + x + x2 + ? ? ? + xn) + (1 
- 

x)(\ + 2x + ? ? ? + nxn~x) = -{n + \)xn, 

and now take the derivative of each side of this to obtain 

-(1 + 2x + ? ? ? + nxn~x) 
- 

(1 + 2x + ? ? ? + nxn~x) 

+ (1 
- 

x){2 +???+?(?- l)x""2) 

= -?(?+ l)*"-1. 

Setting x = 1 yields the arithmetic formula 

n(n + 1) 
1 +2+ ? ? ? + " = 

?2?" 
? 

Exercise. Find formulas for the following finite series. 

w ?4(i)+j(;)+-+dM(;> 

[Hint: Begin with 
(^+(^)x+(2)x2+ 

??? 
+(^)x" 

= (1 + x)".] 

9. Finite Differences. The derivative of a function/ = f(x) at x is defined to be 

Z)n x) = lim -;-, 

whenever this limit exists. D is the differentiation operator which, when applied to a 
function, produces the derivative of that function. 

Discrete mathematics has a similar operator that can be applied to a function. 
The first difference of the function / at x = n is defined to be 

A/(?)=/(? + l) -/(/,). 

The symbol A denotes the difference operator. If a function / defines the sequence 

/(0),/(l),/(2),/(3),...,/(/!),... 

then the function A/ defines the sequence 

A/(0),A/(l),A/(2),...,A/(?),... . 
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The difference sequence leads to a calculus of finite differences that is completely 
analogous to the ordinary calculus of differentiable functions. Some of the similari? 
ties are shown in the table below, where x(/c) = x(x ? \)(x ? 2) ? ? ? (x ? (k ? 1)) 
for positive integers k. 

Differential Calculus Difference Calculus 

1. D(cf)=cD(f) V. A(c/)=c(A/) 
2. D(af+bg) = aDf+bDg 2'. A(af+ bg) = a(Af) + b(Ag) 

3 n//\_ gDf-fDg v J f\_ gV-f*g , 
^.ista 

, 
iiy- r v g i g2 

4. Dx" = nx"-1 4'. Ax(n) =?x("-'> 

One can readily verify (5') using (*) on page 372. When k = 1, formula (5') yields 

(n + 1)<2) 
- 1<2> 

1+2+ ??? +?-=--'-z- 

(n + \)n- 1(1 
- 

1) = 
2 

?(?+ 1) = 
2 

' 

There are also analogues for higher derivatives. Just as D2f= D(Df) and 

D"f= D(D"~]f), we can define A"/=A(A"_I/) for each n. The formula which 

corresponds to the Taylor series 

?. Dkf(a) 

is 

00 
A*/(*) 

/(w) = 2 ?TT\? (x 
~ 

a)(k) (positive integer a). (6') 
k = o k- 

(n-a)(k) (n-a\ This follows from Theorem 2 of [2] by noting that -?- =( , 1. 

As an example, suppose that / is defined by 

/(0) = 0 and f(n) = 1 + 2 + ? ? ? + n 

for n= 1,2,3, . . . . We will use the Maclaurin series analog of (6) 

/CO =2 -jj1^ (7) 
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to find a closed-form expression for f(n). The following table gives the values of 

/,A/,A2/, ... at ? = 0,1,2,3,... . 

n = 0 n= 1 n = 2 n = 3 n = 4 n = 5 

A/: 
A>/: 
Ay: 

10 
5 
1 
0 

15 
6 
1 
0 

All successive rows are identically equal to zero. By (7'), 

1+2+-- 
?+1,-^^4- v 

1 

/(?)..rcn . A/(0)?rn , A2/(0) 
2! 

= 0+ ? + 
jy*i(n 

- 
1) 

w(w + 1) 

Exercise. Use (7') to find a closed-form expression for the sum of the first n cubes: 

/(0) = 0 and/(?) = l3 + 23 + ? ? ? + n3. 

10. Constructive Combinatorics. We have considered a number of mathemat? 
ical ideas that are important in discrete mathematics: iteration, induction, recursion, 
elementary enumeration, generating functions, finite differences. Certainly these 
ideas are not new to mathematics; indeed, they have been part of the mainstream 
since the time of Euler. But they are of growing importance today because of their 
applicability to problems which arise within the context of computing and computer 
science. It is the finite nature of the computer which leads us to think in discrete 
terms. 

A final example will illustrate the constructive and algorithmic flavor characteris? 
tic of much of modern discrete mathematics. Take a deck of Tn = n(n + l)/2 cards 
and divide it into an arbitrary number of piles. Now form a new pile by taking one 
card from each of the piles. Continue to repeat this process: remove a card from 
each pile and form a new pile. Surprisingly, the piles will eventually converge to n 
piles of decreasing size, with n cards in the largest pile, n ? 1 in the next largest, and 
so forth! 

As an example, suppose we divide a deck of T6 = 21 cards into three piles of 5, 9, 
and 7 cards. We can arrange the piles in any order, say, from left to right, and 
represent this situation by the triple (5,9,7). After removing one card from each of 
these piles, we obtain four piles represented by (3,4,8,6). Here, we have placed the 
newly created pile on the far left and the remaining piles remain in their same 
relative order but with 4,8,6 cards respectively. We will symbolize this step by 
writing (5,9,7) ->(3,4,8,6). 
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If we continue to create new piles in this way, we will produce the following 
sequence: (5,9,7)-^(3,4,8,6)^(4,2,3,7,5)-?(5,3,1,2,6,4). In this case, we arrive 
at six piles of different sizes in just three steps. (It usually takes more; for instance, 
20 steps are required when we begin with (3,5,6,7).) It is interesting to note that 
continued repetition of the steps of the algorithm will produce a sorted arrangement 
(with our notation): (5,3,1,2,6,4)->(6,4,2,1,5,3)->(6,5,3,1,4,2)->(6,5,4,2,3,1) 
-> (6,5,4,3,1,2) -> (6,5,4,3,2,1). 

The proof that this procedure always terminates in this way is rather complicated 
to express, but it is based on the kinds of thinking discussed in this paper: search for 

patterns, induction, recursion. (See [1] for details.) It is important to point out that 
the computer can be a useful tool in investigating this situation. Given a partition of 
the deck (an input), a simple program can be written to print out all the intermedi? 
ate arrangements leading to the final limiting pattern. This is bound to make it 
easier for us to notice patterns and make conjectures. It may even suggest further 

questions. For example, what is the maximum number (or average number) of steps 
before termination? Is there a way of predicting the number of steps for a given 
arrangement? How many different cuts require exactly k steps? Playing with these 

questions for various configurations will lead to conjectures, and more questions, 
and more conjectures, and so forth. As this example shows, even beginning students 
in discrete mathematics can be actively involved in the creative process. 

Exercise. The algorithm of this section again illustrates that 1 + 2 + ? ? ? + n 
= n(n + l)/2. Modify the algorithm to show that 

1 + 3 + 5 + ? ? ? + (In 
- 

1) = n2. 
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